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Abstract 
 

The saddle-node bifurcation may occur in the frequency response curves in the 
cases of primary and superharmonic resonances of a forced single-degree-of- 
freedom (SDOF) nonlinear system. The appearance of this discontinuous or 
catastrophic bifurcation may lead to jump and hysteresis phenomena in the 
steady-state response, where at a certain interval of the control parameter, two 
stable attractors exit with an unstable one in between. In this paper, a feedback 
control law is designed to control the saddle-node bifurcation taking place in 
the resonance response, thus removing or delaying the occurrence of jump and 
hysteresis phenomena. The structure of feedback control law is determined by 
analyzing the eigenvalues of the modulation equations. It is shown that three 
types of feedback linear, nonlinear or a combination of linear plus nonlinear 
are adequate for the bifurcation control. Also, it is shown by illustrative 
examples that the proposed feedback control law is effective for controlling 
the primary resonance responses.  
 
Keywords: nonlinear system, bifurcation control, saddle-node bifurcation, 
multiple scales, feedback control. 

 
 
Introduction 
In a forced (SDOF) weakly nonlinear system, primary , sub- and super-harmonic 
resonances may occur if the linear natural frequency and the frequency of an external 
excitation satisfy a certain relation. There are some dynamical behaviors of a 
nonlinear system may be undesirable or unwanted in many applications. When a 
weakly nonlinear system is under resonance conditions, a small-amplitude excitation 
may produce a relatively large-amplitude response for the primary resonance. In 
addition, it is well known that saddle-node bifurcation can occur in the steady-state 
response of a forced (SDOF) nonlinear system in the cases of primary and 
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superharmonic resonances. This kind of bifurcation can lead to jump and hysteresis 
phenomena in the frequency response curves. It is thus needed to modify the 
dynamical behavior via a bifurcation control approach. Dynamical behavior of a 
nonlinear system can be modified to some desirable dynamical behavior by means of 
various feedback bifurcation control methods[1,2,3,4]. For example, the bifurcation 
characteristics of a non-autonomous or autonomous nonlinear system can be modified 
via a linear and nonlinear feedback control[5], also a nonlinear parametric feedback 
control is proposed to modify the steady-state resonance responses thus to reduce the 
amplitude of the response and to eliminate the saddle-node bifurcation [6] and an odd 
non-linearity problem is treated using MMS I and MMS II modified [7]. Maccari 
considered the bifurcation control for the forced Zakharov- Kusnetsov (Zk) equation 
by means of delay feedback linear control terms [8]. One of the representative 
approaches is a combination of linear and nonlinear feedback controls[9,10,11]. The 
linear feedback term is designed to modify the associated Jacobian matrix of the 
system, thus delaying the occurrence of unwanted bifurcations but the nonlinear term 
is used to suppress subcritical and supercritical bifurcations, hence stabilizing the 
bifurcations[12,13,14,15].One such example in application is the control of rotating 
stall and surge in axial flow compressors [16]. However, most of the aforementioned 
studies dealt with autonomous nonlinear systems and thus the feedback control 
formula was designed on basis of the corresponding linearized model. But recently, 
there has been great interest in the research on the subject of bifurcation control for 
non-autonomous systems. For a non-autonomous nonlinear system, the dynamical 
behavior of the original system is associated with that of the corresponding averaged 
equations (an autonomous system), which describe the modulation of both amplitude 
and phase for the resonance response on a slow time scale. The solutions and their 
stability of those averaged equations correspond to those of the original non-
autonomous system. Hence, it is very natural that a feedback control law is 
established based on analyzing the modified modulations equations of the controlled 
system. In this paper, we treat with a nonlinear system which exhibit a saddle-node 
bifurcation. The saddle-node bifurcation in this nonlinear system is an example of 
discontinous or catastrophic bifurcation. This type of bifurcation may lead to 
unbounded motion unless an appropraite control is applied. 
 In this paper, we extended the work of Ji [5] and took the control feedback term 
up to quintic terms .The object of the future works is to study some dynamical system 
by using the perturbation technique and the control method to eliminate or at least 
reduced the undesirable behavior of this system. 
 Now we describe how to control one of the important bifurcation that occur in 
most dynamical systems 
 
 
The primary resonance 
Consider a forced SDOF nonlinearity problem in the form 
 )cos()2( 532

0 tPxxxxx Ω=++++ δαμεω ��� ,  (1) 
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where 0ω  is the natural frequency, ε  is a small positive parameter, μ  is the damping 
coefficient, α  and δ  are the coefficients of the nonlinearity terms, P  is the 
amplitude of forcing, and Ω  is the excitation frequency. Equation (1) is referred as 
the uncontrolled system. 
The frequency- response curves of the system may exhibit saddle-node bifurcations, 
which result in undesirable jump and hysteresis phenomena. In this section, a general 
linear-plus-nonlinear feedback control formula is designed to control the occurrence 
of saddle-node bifurcations in the primary resonance response. The general feedback 
control law may be assumed in form 
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where 112k  and 122k  are scalar linear feedback gains, )41(3 →=ik i and 

)61(5 →=ik i are the nonlinear feedback gains, and ε  is introduced as above. 
Introducing the general feedback control law into equation (1), then the controlled 
system takes the form 
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To analyze the primary resonance for which 0ω≈Ω , the excitation amplitude is 
ordered as fP ε=  , and a detuning parameter σ  is introduced such that  

εσω +=Ω 0 .   (4) 
 
An approximate solution of equation (3) can be obtained by a number of perturbation 
techniques. The method of multiple scales[17,18] is used and for simplicity, we 
assume a two scale expansion of the solution 
 ),(),(),();( 2
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The excitation is expressed in terms of 0T  and 1T  as 

0 0 1cos( ) cos( )P t f T Tε ω σΩ = + .  (6) 
 
 Substituting equations (5) and (6) into (3) and equating the same power of ε  on 
both sides, we obtain a set of linear partial differential equations: 
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where .

n
n TD ∂

∂=  Solving the first equation in (7) for ),( 100 TTx , we have 
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Substituting Equation (8) into the second Equation of (7), then to eliminate the secular 
terms yields 
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Now, suppose  

)(
11

1)(
2
1)( TieTaTA β≡   (10) 

 
By substituting Equation (10) into (9) and separating the real part and the imaginary 
part, we obtain a set of autonomous differential equations that govern the amplitude 
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where βσγ −= 1T .  
From Equation (11), we have a set of algebraic equations for amplitude a  and phase 
γ  of the steady- state primary resonance 
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whereby we derive the frequency- response relation between a  and σ  in the form 
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A first-order approximation for the solution of equation (3) can be derived as 
 )()cos( εγ Otax +−Ω= ,  (14) 
  
 Equation (11) is an autonomous dynamical system. The fixed points of this system 
correspond to the periodic solutions of the original system (3). If all the feedback 
gains 0=ijk , equation (11) corresponds to the modulation equations for the 
uncontrolled system. It is clearly seen that the addition of feedback control modifies 
the modulation equations. Consequently, the feedback control is possible to change 
the nonlinear dynamic characteristics associated with the system. The stability of the 
steady-state response of the controlled system (3) is associated with that of the fixed 
points of system (11), which is determined by the eigenvalues of the corresponding 
Jacobian matrix of equation (11). The eigenvalues are the roots of 
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 From the Routh-Hurwitz criterion, the steady-state vibration is asymptotically 
stable if and only if the following two inequalities hold simultaneously 
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and are otherwise the system is unstable. 
Now, it is necessary to know what is happening in an uncontrolled system due to the 
existence of bifurcation . The eigenvalues of the Jacobian matrix associated with the 
steady-state solutions for the corresponding uncontrolled system are obtained from 
equation (15) by letting all 0=ijk , and become the roots of 
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 From equation (16), it is easy to see that the sum of the eigenvalues is μ2− , 
which is negative for .0>μ  Then, this fact rejects the occurrence of a Hopf 
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bifurcation ( a pair of purely imaginary eigenvalues ). It is found that one of the 
eigenvalues is zero when the last two terms of equation (11) are equal to zero, where a 
saddle-node bifurcation occurs. In this case the steady-state response of the system 
appears a jump. We use this fact to controll the system and a void the appearance of a 
saddle- node bifurcation by controlling and modifying the appearance of a zero 
eigenvalue of the associated Jacobian matrix. 
 From studying for the uncontrolled system if the inequalities 0>σα  and 0;σδ  
are satisfied, there always exists at least a certain value of σ  such that an eigenvalue 
becomes zero, where a saddle-node bifurcation occurs. For simplicity, the proposed 
feedback formula can then be reduced by setting 0,0 343212 === kkk  and 

0565452 === kkk . 
 Based on the foregoing discussion, there are two cases to be considered in the 
design of the feedback control law. 
 
Case I: to transform the inequalities 0>σα and 0;σδ  for the uncontrolled system 
into the inequalities 01 <pσ  and 0*

1 ≺pσ  for the controlled system, hence 
eliminating the existence of a zero eigenvalue. 
 
Case II: to delay the occurrence of a zero eigenvalue for 0>σα  and 0*

1 ≺pσ  to 
larger values of the excitation parameters. 
 It is clear from equation (15) that the parameter 1σ  for the controlled system can 
be modified by the linear feedback component 11k , whereas the parameters p  and *p  
can be changed by the nonlinear feedback components 31k , 33k , 51k , 53k  and 55k  . This 
suggests that the bifurcation control can be achieved by three types of feedback. 
 
Controlling the system by using a pure linear feedback 
Using the pure linear feedback control xku 112ε= , the eigenvalues of the 
corresponding controlled system are given by 
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for a suitable choice of linear feedback gain 11k  renders 0)(
0

11 <+ α
ω

σ
k  and 

0)(
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11 <+ δ
ω

σ
k , the two eigenvalues possess negative real parts. The saddle-node 

bifurcations do not occur in the controlled system and hence this system will not 
exhibit jump and hysteresis phenomena. Under such a linear feedback, the saddle-
node bifurcations are removed from the interval of σ . 
 
Controlling the system by using a pure nonlinear feedback 
In this case, the pure nonlinear feedback cannot eliminate the saddle node 
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bifurcations. However, the saddle-node bifurcations can be delayed to reappear at a 
larger value of the excitation amplitude. In terms of the foregoing discussion, the pure 
nonlinear feedback is assumed to be of the form 
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control, the so-called frequency-response equation is of the form 
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Since the saddle-node bifurcation points exist at the locations of vertical 
tangency[19,20]. Differentiation of equation (18) implicitly with respect to 2a  and 
setting 02 =dadσ , leads to the condition 
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with solutions  
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For ,)2( 24*22 appa +<μ  there exists an interval +− << σσσ  in which three real 
solutions of equation (18) exist. In the limit ,)2( 24*22 appa +=μ  this interval leads 
to the point 4*2 32 appa +=σ . The critical excitation amplitude obtained from 
equation (18) is 
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For critff < , there is only one solution, while for critff > , there are three. It can be 
concluded that, if the nonlinear feedback gains 31k , 33k , 51k , 53k  and 55k are chosen 
with the same sign of parameters α  and δ , the critical excitation amplitude for the 
controlled system will be greater than that for the uncontrolled system, for instance 

23869.0)0.3,5.0,0.1,05.0,0.3( 0 ==Ω==== δαμωcritf  for the uncontrolled 
system and 

,3.0,1.0,1.0,0.3,5.0,0.1,05.0,0.3( 5133310 ====Ω==== kkkfcrit δαμω  
,1.053 =k 31498.0)05.055 ==k  for the controlled system. As a result, the saddle-

node bifurcation is delayed to occur at a higher value of forcing amplitude. 
 
Conrolling the system by using linear and nonlinear feedback 
In this case, the candidate feedback control formula is chosen as 
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 The parameters 1σ  , p  and *p can be assigned any desired values by adjusting the 
feedback gains 11k , 31k , 33k , 51k , 53k  and 55k . Thus, the saddle-node bifurcations can 
be eliminated or delayed to desirable values by an appropriate selection of feedback 
gains. It should be noted that the peak amplitude pa  of the forced response for the 
controlled system is given by 

,
2 0μω

fa p =  

 
which is the same as that of the uncontrolled system. This indicates that the control 
gains modify the bifurcation behavior and do not change the maximum of the forced 
response amplitude. 
 
 
Illustration 
This section illustrates the applicability of the feedback control developed in section 
2. Whenever numerical simulations are performed, the values for the system 
parameters are chosen as follows: 0.3,5.0,0.1,05.0,0.30 =Ω==== δαμω  for 
the primary resonance. For all the frequency – response curves presented here, the 
solid and broken lines correspond to the stable and unstable solutions, respectively. 
 For the primary resonance response, the critical excitation amplitude for the 
uncontrolled system with the given values of the system parameters is 23869.0=critf
. If the excitation amplitude is less than this critical value, the uncontrolled system 
does not exhibit saddle-node bifurcation. On the other hand, if the excitation 
amplitude is exceeds this critical value, the primary resonance response of the 
uncontrolled system (1) with 0, ;δα  (resp. 0, ≺δα ) will exhibit jump and hystresis 
phenomena in a certain interval of region 0;σ  (resp. 0≺σ ). Figure 1 shows typical 
frequency- response curves of the uncontrolled system (1) under the excitation 
amplitude 26.0=f . The saddle-node bifurcations in the frequency response for the 
uncontrolled system occur at the external detuning values c1 and c2 respectively. If an 
experiment was conducted to construct the frequency response curves, jump 
phenomenon occurring from one stable branch to another stable one would be 
observed at the saddle-node bifurcations. For the controlled system under introducing 
a pure linear feedback to the uncontrolled system., no saddle- node bifurcations 
appear in the frequency- response curves , thereby rejecting jump and hystresis 
phenomena. Figure 2 shows the frequency- response curves of the controlled system 
for several linear feedback gains. The linear feedback gains are chosen according to 

the inequality 0)(
0

11 ≺α
ω

σ
k

+  and .0)(
0

11 <+ δ
ω

σ
k  We can see that an appropriate 

choice of the linear feedback gains removed the saddle-node bifurcations occurring in 
the uncontrolled system in the same region of detuning σ  for the controlled system. 
Also, this choice can reduce the amplitude of steady- state response. Moreover , the 
controlled system does not exhibit jump and hysteresis phenomena in the same 
interval of detuning σ  for the uncontrolled system. Figure 3 shows the effect of 
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nonlinear feedback gains on the critical value of the excitation amplitude for 
appearance of saddle-node bifurcations where the critical excitation amplitude is 
plotted as a function of a nonlinear feedback gain. We show that the nonlinear 
feedback gains 31k  and 33k  are more effective than the nonlinear feedback gains 

5351,kk  and 55k  on the critical excitation amplitude also we notice that the feedback 
gain 55k  has the weakest effect on critf . Then the saddle- node bifurcation can be 
delayed to occur by using an appropriate choice of the nonlinear feedback gains only. 
The saddle-node bifurcations can also be controlled by a combination of linear and 
nonlinear feedback as we show in Figure 4 or by using anyone of nonlinear feedback 
control gains alone as we show in Figure 5 . It can be seen that the saddle-node 
bifurcations are delayed to occur compared with Figure 1. Moreover, it is easy to note 
that the amplitude of the steady- state response is greatly reduced ( Figure 6). Now, it 
is shown by illustrative examples that the proposed linear plus nonlinear feedback are 
effective for controlling the primary resonance response. 

 
 

 
 

Figure 1: Frequency-response curves for the primary resonance of the uncontrolled 
system under forcing amplitude 26.0=f . Saddle-node bifurcations occur at points 

1C  and 2C . 
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Figure 2: The effect of linear feedback gains on the frequency-response curves for 
the primary resonance. 

 

 
(a) 

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

k31

�



Saddle-Node Bifurcation Control for an Odd Non-Linearity Problem 223 
 

 

 
(b) 

 

 
(c) 

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

k33

�

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

k51

�



224  A.M. Elnaggar et al 
 

 

 
(d) 

 

 
(e) 

 
Figure 3: The effect of nonlinear feedback gains on the critical value of the excitation 
amplitude for appearance of saddle-node bifurcations. 
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Figure 4: The frequency- response curves for the primary resonance under a 
combination of linear and nonlinear feedback with control gain 

,07.0,04.0,8.1 333111 ==−= kkk  ,01.0,05.0 5351 == kk and .05.055 =k  
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(b) 

 

 
(c) 
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(d) 

 

 
(e) 

 
Figure 5: The frequency- response curves for the primary resonance by using one 
nonlinear feedback control gain only. 9.1)( 31 =ka , 5.0)( 33 =kb  , 8.0)( 51 =kc , 

8.0)( 53 =kd , 1.0)( 55 =ke . 
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Figure 6: The time histories; thick lines for the controlled system at (
05.0,01.0,05.0,07.0,04.0,8.1,0.0)0(,5.0)0( 555351333111 =====−=== kkkkkkxx �

) while thin lines are for the uncontrolled system. 
 
 
Conclusions 
The steady-state response of a forced SDOF nonlinear system can exhibit jump and 
hysteresis phenomena in the case of primary resonance. The saddle-node bifurcations 
of the fixed points of the averaged equations are responsible for the nonlinear 
behavior. A general feedback formula is designed to control the saddle-node 
bifurcations in the steady-state response. It is found that the linear feedback 
component can eliminate the saddle-node bifurcations which occur in the uncontrolled 
system, while the nonlinear feedback components can delay the occurrence of saddle-
node bifurcations. Also, an appropriate choice of any one of the nonlinear feedback 
gains can delay the saddle-node bifurcations alone. 
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